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The neutral kaon system is used to test the quantum theory of resonance scattering 
and decay phenomena. The two dimensional Lee-Oehme-Yang theory with 
complex Hamiltonian is obtained by truncating the complex basis vector expansion 
of the exact theory in rigged Hilbert space. This can be done for K~ and K2 as 
well as for Ks and Kt. depending upon whether one chooses the (self-adjoint, 
semibounded) Hamiltonian as commuting or noncommuting with CP. As an 
unexpected curiosity, one can show that the exact theory (without truncation) 
predicts long-time 2at decays of the neutral kaon system even if the Hamiltonian 
conserves CP. 

1. T H E  S T A N D A R D  T W O - D I M E N S I O N A L  E F F E C T I V E  
T H E O R Y  W I T H  C O M P L E X  H A M I L T O N I A N  

The phenomenologica l  character is t ics  of  a resonance or a decay ing  
particle are its energy ER (resonance energy)  or relat ivis t ical ly its mass  m, 
and its width F = h/'rR, where "r R is its l i fe t ime (in its rest frame). These  two 
real numbers  are combined  into a complex  energy zR = ER -- i ~//2 [or 
relat ivist ical ly into a complex  value sR = (m -- i "y/2) 2 o f  the Mandels tam 
variable s, which is the (energy) 2 in the rest f rame of  the decaying  state or 
the (total energy) 2 in the center-of-mass  frame of  the decay products (often 
not m, but M defined by s R = M 2 - iM'y is cal led the mass  of  the resonance)] .  
This complex  energy ZR or complex  mass-squared  sR can be def ined as the 
posi t ion o f  the f irst-order (resonance) pole  in the second sheet o f  the analyt i-  
cal ly cont inued S-matrix,  in the same way  as s tat ionary states are given by 
bound-state  poles of  the S-matrix.  Empir ical ly ,  stabil i ty or the value o f  the 
l ifet ime does not appear  to be a cri ter ion for elementari ty .  Stable part icles  are 
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not qualitatively different from quasistable particles, but only quantitatively 
different by a zero or very small value of F. (A particle decays if it can 
decay and it is stable if selection rules for some quantum numbers prevent 
it from decaying.) Therefore both stable and quasistable states should be 
described on the same footing, as is the case if one defines them by S- 
matrix poles. 

Since a stationary state characterized by a real energy value Es is 
described not only by a bound-state pole on the negative real axis, but also 
by an eigenvector of the (self-adjoint, semibounded) Hamiltonian H with 
eigenvalue E~, a "pure" decaying state should also be described by an "eigen- 
vector" of H, but with complex eigenvalue zR. In the standard, Hilbert space 
formulation of quantum mechanics such vectors do not exist. But since it is 
of practical importance for the phenomenological description of experiments 
to have a vector space description, this deficiency of the Hilbert space quantum 
mechanics has not prevented the practitioners from using eigenvectors with 
complex energy in "phenomenological", "effective" theories of decay 
(Gamow, 1928; Peierls, 1955; Garcia-Calderon and Peierls, 1976; Hemandez 
and Mondragon, 1984). The Lee-Oehme-Yang theory for the time evolution 
of the two-resonance neutral kaon system is the most celebrated example 
(Lee, 1981) of this. 

The Lee-Ohme-Yang theory is usually justified as the Weisskopf- 
Wigner approximation applied to the two kaon states IK~ j~-0), in which 
the neutral K~ is prepared in an inelastic scattering experiment by 
strong interaction (e.g., 'rr- p ~ AK~ 

One then introduces the two linear combinations IKt) and IK2) (leaving 
aside the CP-violating Hamiltonian)---or the IKs) and IKL) (if one includes 
CP violation in the Hamiltonian): 

Ns 
IKs) = ~ ((1 + es)rK ~ + (1 - es)l_K~ 

IKI) for es --~ 0 (1.1a) 

NL 
)K~) = ~ ((1 + ~L)IK ~ - (I - ~L)lg~ 

~-- IK2) for e L ~ 0 ( l . lb)  

The IKI) and IK2) (or)Ks) and [KL) ) are defined to be eigenstates of the 
complex "effective" Hamiltonian matrix H = M - (i/2)F. These vectors, and 
not the IK~ rK~ are assumed to represent the particle states, with the justifica- 
tion that "since we should properly reserve the name particle for an object with 
unique lifetime, KI and/('2 are the true particles" (Pais, 1990). This effective 
Hamiltonian we call H if the CP-violating term H.,w is left aside, and we call it 
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H = H + Hsw = n o q- Hw + nsw = Ho + Hint with [Hsw, CP] 4= 0 
(1.2) 

if some weak additional CP-violating interaction Hamiltonian Hsw (not neces- 
sarily superweak) is included. H is assumed to be normal (i.e., M, F are 
Hermitian and commute, which excludes Jordan blocks), and thus it is diago- 
nalizable with eigenvalues given by 

/ 
HIK ~  = [m~ - 

and similarly for H 

HIKs)  = ( m s -  
\ 

�9 ~ o- . (m2 - i Y-~2~re'~ t 2)[KI ), HIK 0-) = 2]~x2 / (L3a) 

The time evolution for t -> 0 is given by 

e-imlKOl- ) = e-imlte-(vl/Z)qKO-) 

e-itgqK 0-) = e-i'nZe-~"/JZltlK 0-) (l.4a) 

or, if H is the Hamiltonian, by 

e-;HtlKi) = e-i(mL-(~t]2))tlKZ (l.4b) 

The entire effective theory of the neutral K-meson system then takes place 
in this 2-dimensional space 7f z spanned by the eigenvectors (I .3). An arbitrary 
coherent mixture (superposition) in the K~ is given by 

dpeff(o) = IKs)as + IK-~)at cx IK[) + 91Ks) (1.5) 

It has the time evolution 

~beff(/) = e-iHt~b eft 

= e-imste-(t~s/z)tlK~)as + e-imLte-(i'fz/2)tlK[)aL (1.6) 

[or a corresponding expansion in terms of KI, K2, with al, az, if (l.3a) and 
(l.4a) hold]. The IKs) and IKL) in the coherent (pure) beam state (1.5) are 
conventionally expressed in terms of [K ~ and IK ~ by (1.1), though the IK~ 
IK ~ and the [K~-), IK[} belong to different Hamiltonians H0 and H (or Ho 
and H for H~w = 0), respectively. The IK ~ and IK ~ should therefore span 
a space different from ~2- We indicate this difference between these two 
kinds of vectors by the superscript - in IK~-), etc. We shall discuss this 
notation in more detail in Section 3 below. An incoherent mixture, which 
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one usually encounters experimentally in the initial K ~ beam 2 [or which arises 
from a pure state if one uses a theory based on a Liouville equation for the 
neutral K-system (Huet and Peskin, 1995; Ellis e t  al. ,  1984, 1992, 1995)], 
is described by a density matrix or a statistical operator in the space ~2- 

The quantity that one always considers (Kleinknecht, 1989) is the instan- 
taneous decay rate o f  the K ~ state at time t into the detected decay channel 
c. This transition rate is proportional to 2"rrpcl(clHintl(b(t))l 2, where c = 'rr+'rr - 
or "rr~ ~ or any other decay channel. Pc is the phase space factor (density o f  
states in channel c) and Ic) is the eigenvector o f  the interaction-free Hamilto- 
nian H0. The amplitude of  this rate is given according to (1.6) by 

(,Tr,rl'lHint[(l)eff(t)) = (,rr,rrlHintl K s )ase-imst e-(~t/2) t 

-}- ('rr"B" [ Hin t [ K ~- )ace  - imste -(.-//J2)t (1.7) 

One usually considers the ratio 

R(t )  = 
I('rr'rrlHi,t[qb ~ff(t))l z 

1(TrTrlHintlKs) l 2 
(1.8) 

for which one obtains from (1.7) 

R(O = lasl2e -~st + lacxll2e -~Lt + 21asl " laLI " I'rlle -('~L+'cs)t/2 cos(Amt + 9)  

(1.9) 

where 

A m  = m L - ms 

and where 

('rrq'r IHintlK~ - ) 
- i ,qle-i~ 

x I -- (,rr,rrlHintlKs) 

~p = arg as - arg(rlaL) ( I . I 0 )  

If  Iqb ~ff') is IK~ then as = aL = l/v/2. (If (D eft is a coherent mixture behind 
a regenerator, then as = p; ac = 1.) For large values o f  t ~ 20"rs = 20(1/ 
3's) ('rs = 0.893 __+ 0.001 X 10 -1~ sec), only the second term in R ( t  = 20"rs) 
o f  (1.9) does not have a factor o f  e -~st/2 ~ 10 -5 or smaller, so R(t )  is given by 

I 
R ( t  = 20"rs) = ~ l'ql2e -'~Lt, "tc/'Ys ~ 1.72 X 10 -3 (1.11) 

I f  in (1.2) H.~w would be zero and if in ( l . l a )  

2The real experimental situation is more complicated, since the initial neutral K meson is 
usually not a pure K ~ state, but is an incoherent mixture of K ~ and ~ due to the strangeness 
conservation in the production mechanism (Bohm et al., 1969). 



Irreversible QM in the Neutral K-System 2243 

IKt) = IK2) with CPIK2) = -IK2), 

then (due to CPlav,n) = +l'rrrr)) (,rr'rrlHintIKt) --) ('rr'rrlHwlg2) = 0, i.e., "q in 
(1.11) should be zero. Experimentally, however, one observes 
R(t = large) r 0 [Princeton effect (Christenson et al., 1964)]. This is explained 
by the existence of an Hsw with the properties of (1.2), and by the decaying 
particle states [KL) and IKs) not being the CP eigenstates ffs and IKD 
respectively. 

The two complex parameters ~q+_ = I~l+_le i~+- given by (1.10) for (Tr-rrl 
= (1r+'rr-I and "q0o given by (1.10) for ('rr~rl = ('rr~176 are the observable 
quantities in terms of which one usually expresses the experimental data 
ascribed to CP violation. The latest experimental data, which may (NA31; 
Barr et al., 1993) or may not (E731; Gibbons et al., 1993) indicate direct 
CP violation: (('rr,rrIHintlK2) 4: 0, "q+_ :r Xloo), give the following values for 
the CP-violation parameters: 

I-q+_l = (2.269 • 0.023)10 -3, d~+_ = 44.3 ~ • 0.8 ~ ('qoo ~ "q+-) 
(1.12) 

Inserting this into (1. l 1), we obtain the following experimental value for R(t): 

1 1 
R(t = 20G) ~ ~ }2.27 X 10-3[ 2 X 0.966 ~ ~ 12.23 X 10-3/2 (1.13) 

We shall use this number for the phenomenologicat analysis in Section 4. 

2. THE RIGGED HILBERT SPACE FORMULATION OF 
QUANTUM THEORY 

Vectors with the properties (1.4) and (I.3) have of course no place in 
the Hilbert space of the standard quantum theory, where all vectors have a 
unitary time evolution and where self-adjoint Hamiltonians cannot have com- 
plex eigenvalues. If, on the other hand, one forces the neutral K vectors into 
the Hilbert space, then one derives all kinds of mathematical consequences 
for which there exist no experimental evidence, like deviations from the 
exponential decay law, and vacuum regeneration of Ks from KL (Khalfin, 
1972, 1994). The resolution of these incongruities is, of course, that the two- 
dimensional space ~2 of the decaying neutral K-meson system cannot be 
contained in the Hilbert space. But we shall show that ~2 is contained in 
the dual space qb x of a rigged Hilbert space (or Gelfand triplet) ~ C ~ C qb • 

A theory of resonance scattering and decay has been developed over 
the past two decades (Bohm, 1978, 1981, 1993, 1995; Gadella, 1985a,b, 
1984; Antoniou, 1992; Antoniou and Prigogine, 1993; Antoniou and Tasaki, 
1993; Bohm et al., 1994, 1995) which uses the rigged Hilbert space (RHS) 
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formulation of quantum mechanics. (Roberts, 1966; Bohm, 1967; Antoine, 
1969a; Melsheimer, 1974). 

Whereas in the Hilbert space the solutions of the Schrrdinger equation 
can have only unitary time evolution and the eigenvalues of self-adjoint 
operators can only be real, the RHS formulation allows for a greater variety 
of solutions and for new initial and boundary conditions with a preferred 
direction of time (irreversibility). In this formulation, heuristic notions like 
Dirac kets IE),Gamow's (exponentially decaying "state") vectors IE - i(F/2)), 
and Peierls purely outgoing boundary conditions (Gamow, 1928; Peierls, 
1955; Garcia-Calderon and Peierls, 1976; Hernandez and Mondragon, 1984) 
can be given a unified and mathematically meaningful foundation. Vectors 
with the properties (1.3) and (1.4) are well defined in the RHS formulation 
as generalized eigenvectors [see Appendix A, equation (A.6)] of a self-adjoint 
Hamiltonian (semibounded, essentially-self-adjoint operator H in an infinite- 
dimensional space), and the time evolution of these vectors is given by an 
irreversible semigroup generated by the Hamiltonian. These new vectors, 
which can also be obtained from a resonance pole of the analytically continued 
S-matrix and consequently have a Breit-Wigner energy distribution, have 
been called Gamow vectors. 

Since this paper addresses a physics problem, we do not give here the 
precise mathematical definition of the RHS in general and of the particular 
spaces ~, qb., ~_ and their topological duals (space of continuous antilinear 
functionals) qb • qb ~_, ~ x which we shall use in this paper. In Appendix A 
we give a brief and casual description of the RHS. For the calculations in 
this paper we adopt the modus operandi of a physicist and do not worry 
about the precise mathematical definitions of ~ or �9 or ~b+, qb_, ~b ~_, etc. 
All these spaces are different topological completions of the same pre-Hilbert 
space ~ [i.e., a linear space ~ with "scalar product" denoted by (~, F) or 
by (+IF)]. Here we use the algebraic space �9 and some additional rules 
which can be justified by the mathematics of the RHS. These additional 
rules include the well-known rules of the Dirac bra-and-ket formalism, some 
mathematical properties of the Gamow vectors [e.g., those given by (1.3) 
and (1.4)], and in particular some basis vector representations which were 
not part of the Dirac formalism (e.g., the so-called "complex spectral represen- 
tation" of Appendix B). These rules can only be justified by the full RHS 
theory. We shall simply introduce these rules as needed, while referring the 
reader to the literature (Bohm, 1978, 1981, 1994; Gadella, 1983a,b, 1984; 
Antoniou, 1992; Antoniou and Prigogine, 1993; Antoniou and Tasaki, 1993; 
Bohm et  al., 1996; Bohm and Gadella, 1989) for their justification. 

However, since the distinction between the spaces qb+ and 6p_ will be 
of physical importance, we need to explain some of their mathematical 
differences. This is done using their mathematical "realizations." One often 
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says in mathematics that an abstract (linear topological) space is "realized" 
by a function space if there exists a correspondence between each vector 

60 and an element (or elements) of the space of functions (probably 
in mathematics functions are more "real" than vectors). The basis vector 
expansions of Appendix B are examples of mathematical "realizations." In 
this manner the space 60 is represented or "realized" by the standard test 
function space (Schwartz space). The space 60. (and 60_) is "realized" by 
the subspace of Hardy class functions, where the + ( - )  refers to analyticity 
in the upper (lower) half-plane of the second sheet of the complex energy 
surface, (for mathematical details see Bohm and Gadella, 1 989, Bohm, 1 994; 
Bohm et al., 1996). 

In physics the abstract mathematical objects are realized by physical 
objects. Thus a physicist's "realization" of the linear spaces 60+, 60_ and 
their duals are by quantum physical objects like states and observables. 
The standard quantum theory uses the same Hilbert space for both states 
and observables. 

In contrast, distinct initial-boundary conditions for state vectors ++ (e.g., 
in-states ~b + of a scattering experiment) and observables Id)-)(~-I (e.g., so- 
called out-states t~- of a scattering experiment) lead to two different rigged 
Hilbert spaces (Bohm, 1993, 1995; Bohm et al., 1994, 1995): 

qb + ~ 60_ C 7s C 60 x for in-states of a scattering experiment which 
are prepared by a preparation apparatus, 
e.g., an accelerator (2.1) 

~-  ~ 60+ C 7s C 60 ~. for observables or out-states which are 
measured by a registration apparatus, 
e.g., a detector (2.2) 

The Hilbert space ~ is the same in both RHS (2.1) and (2.2). However, 60+ 
and 60_ are different, but they have more than the zero vector in common, 
dO_ N 60+ :g {0}; in fact, 60_ n 60§ is in general infinite dimensional. To 
use different mathematical spaces for states (in-states and observables (so- 
called out-"states") is one of the new features of the RHS formulation of 
quantum mechanics. 

In (2.1) 60_ describes the possible state vectors experimentally given 
by the preparation apparatus (e.g., qb in or ~b § of a scattering experiment) and 
in (2.2) 60+ describes the possible observables (e.g., It~~176 or I~-)(~-I 
of a scattering experiment) experimentally specified by the detector. The 
IF z) ~ �9 ~ represent quantities connected with the microphysical system 
(e.g., "scattering states IE -+) or decaying states IE - iF/2~-). The superscripts 
for the vectors ++ ~ 60_ and + -  ~ 60+ and the superscripts in IE ~-) ~ 60• 
for the eigenkets of the Hamiltonian H = H0 + Hint refer to the standard 
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notation of scattering theory, where ~b § represents the in-states and air- repre- 
sents the out-observables (also called out-states). The vectors IE -+) are related 
by the Lippmann-Schwinger equations to the eigenkets IE) of H0, and the 
superscripts of the eigenkets IE - iF/2-)  e ~ +x_ and IE + iF/2 +) e qb x of 
the (essentially self-adjoint, semibounded) Hamiltonian H with complex 
eigenvalue (E -T- iF/2) are an extension of the labels in IEZ). (The antithetical 
subscripts for the spaces have their origin in mathematicians' notation for 
the Hardy class functions.) In this paper we shall only use the Gamow vectors 
IE - iF/2-) which have the property (1.4) describing exponentially decaying 
microphysical objects. 

3. THE C O M P L E X  TWO-DIMENSIO N A L HAMILTONIAN OF 
THE N E U T R A L  K-SYSTEM AS A TRUNCATION OF T H E  EXACT 
HAMILTONIAN IN T H E  RHS 

The neutral K meson is produced in an inelastic scattering experiment. 
We discuss here the case that this inelastic scattering process produces pure 
K ~ states, as, e.g., in the reaction (see footnote 2) 

w-p ~ AK ~ ~ A'rr'rr (3.1) 

The principles of a scattering experiment applied to this process are depicted 
in Fig. 1. The scattering experiment consists of a preparation part and a 
registration part. A meson beam "rr- (i.e., in the II3y = 1, - 1, 0 state), which 
is prepared as a d0 i" before the interaction with the target B, evolves in the 
interaction region as a ++ ~ qb_. Due to the interaction it makes a transition 
into the prepared state of the K ~ flavor, described according to (2.1) by a 
qby=l ~ qb .  Thus the part of  the experiment which prepares the state +~-=l 
consists of the apparatus for the preparation of  the at- beam and the strong 
interaction with the baryon target B (changing the target state from p to A). 
The registration part of the experiment determines the so-called out-"state" 
~ -  which is registered outside the interaction region as, e.g., either t~ ~ = 
I'rr+'rr -)  or ~out = i,rrO,rr0). Its principal component is the w+'rr - and/or 'n~ ~ 
detector. According to (2.2), the out-state, which is actually an observable 
I~-)(t~-I, satisfies ~ -  e ~+. In the conventional formulation of scattering 
theory in the Hilbert space, the in-state qb § (and qb ~n) as well as the out- 
observable ~ -  (and t~ ~ can be any vector of the Hilbert space ~ .  In reality 
the ~b § and d~- are subject to different conditions, namely, initial conditions 
for qb § and final conditions for qb-. This is described in the new RHS quantum 
theory by using different mathematical conditions, qb + e ~ _  and + -  e qb+, 
as shown in equations (2.1) and (2.2), respectively. 

We now consider the state of the meson at times (in the rest frame of 
the K ~ t > 0. Here t = 0 is the time before which the preparation of the 
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ti"(t) B=p 

r--q > | 
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'1 I 
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b 
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accelerator ) i. ~ .:! -..... / 

e d 

Fig. 1. The definition of the spaces qb  (in-states) and ~b+ (out-observables). The preparation 
and registration procedure for quantum systems (Ludwig, 198311985) is applied to the inelastic 
scattering experiment for production and decay of the neutral K-system. (a) The preparation 
of the -rr- state. (b) The preparation apparatus of the K ~ system, which consists of the preparation 
of "rr- and the interaction with the prepared baryon system B. (c) The registration apparatus 
which defines the out-"state" NJ-)(O-I (observable); it principally consists of the w'rr detector. 
Every arrangement for an experiment with single microsystems consists of a preparation 
apparatus and a registration apparatus. (d) The preparation part of panel b combined with the 
registration part of panel c into the experiment that measures the probability for the transition 
K ~ --* "rr~r. Since the in-states +§ and the out-observables L~- are subject to different conditions, 
they are described in the RHS quantum theory by distinct spaces ~b_ and ~+, respectively. 
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neutral K-meson state (or in general o f  the qb + state) is completed and after 
which the registration o f  Oout +__ t~- begins. The time t is the proper time of  
the kaon, which in the actual experiment is measured by the distance d f rom 
the target position (or f rom the exit face o f  the regenerator in regeneration 
experiments when ~b + -- f~by=l + fqby=-l) to the decay vertex (t = dmx/cp, 
where p is the competent o f  the kaon momentum along the beam line). To 
each decay vertex we associate a microphysical  exponentially decaying state 
o f  the neutral K-system, which is represented by a G a m o w  vector. This 
exponentially decaying Gamow state is a component  o f  qb+(t) that has dynami-  
cally evolved in time from the original, prepared state d~ + = qb+(t = 0) 
by the exact Hamiltonian H. (The Hamiltonian H contains all interactions, 
including the one responsible for the kaon decay.) Since ~b + is according to 
(B.2) a superposition o f  functionals, the time evolution operator is given by 
the semigroup eiH• thus 3 

+ +(t) = e-iHXtr + or ~b +(t) = e-iHXtdp +, t >-- 0 (3.2) 

We first want to discuss a theory in which the CP-violating H~w is 
assumed to be zero and for which the exact Hamiltonian is denoted by H. 
Then [H, CP] = 0 and we choose H and CP as the complete system of  
commuting observables (c.s.c.o.). We ignore all other observables for the 
neutral K system except for the energy operator H, the weak-interaction-free 
energy operator H0; the hypercharge Y, and the discrete symmetries like CP. 
[This means we are always working in the K-meson rest frame where we 
have (Px, J3, j-rr) = (0, 0, 0 - ) ,  which we do not write).] In place o f  the c.s.c.o. 
H, CP, one can also consider the c.s.c.o. H0, I 7". Besides these two, there is 
still another c.s.c.o.: H0 and CP, which we, however, do not want to consider. 
The operators H and Y do not form a c.s.c.o. 

Now we shall make use o f  some exact results in Appendix B. We want 
to contrast the two basis systems given by the nuclear spectral theorem (B. 1) 
and by the complex basis vector expansion (B.2) for the c.s.c.o. H, CP. The 
system of  basis vectors is denoted, respectively, by 

IE, cp-) for 0 --< E < ~ (3.3a) 

3The notation H x is the notation of (A.7). Since H is self-adjoined, we usually drop the • 
i.e., we use the notation of (A.8). The important feature of (3.2) is that t --.> 0, i.e., that we 
want to consider ~b+(t) for t -> 0 and then 6 § E qb is to be understood as a functional over 
qb§ i.e., ~b+(t) ~ qb +Xi• qb +x D qb ~ qb ~'. To emphasize this, we retain the mathematically 
precise notation e -mt ~_ (eint)x in (3.2). As a consequence of the fact that ~+(t) ~ q b• for 
t > 0, it follows that one can take only bra-kets of d)+(t) with t~- = out-observables (like, 
e.g., t~- = Iw~)), which means that (d/-td~§ is well defined for t > 0 but (d~§247 is not 
well defined if d~* is any element of qb. This is sufficient for the physical problem, since 
only I(~-I~b+(t))J ~ has a meaning, namely the probability for a transition from the state 6 § 
into the decay products ~-. 
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and by 

Lza, c p - )  for z,- = Zx~, ZKz; and Ito, cp +) for - ~ H  < ~o _< 0 (3.3b) 

We also shall consider the eigenvectors of the c.s.c.o. H0, Y, which we 
denote by 

IE, y) for 0 -< E < ~ (3.4) 

The mb~sing superscript - in (3.4) indicates that IE, y) are eigenvectors of 
H0 and not of H (this latter notation is not in agreement with the standard 
notation of scattering theory, where IE) would denote the eigenvector of H0o 
= Ho - Hstrong)- 

The vectors 

IE = mtr y = • 1) correspond to the usual 

while the vectors 

Iz,, cp  = + ,  - ) ,  

IK~ I~ ~ (3.5) 

Iz2, cp  = - ,  - )  correspond to the usual I K:) I K2) 
(3.6) 

Therefore we also use the notation 

IKi, - )  = Izi, cp = - ( - 1 )  i, -),  zi = taxi - i - ~ ,  i =  1,2 (3.6a) 

[up to an arbitrary "normalization" constant; cf. (3.18) below and footnote 6]. 
This notation also explains why already in equations (1.3) and (1.4) we 
employed the unusual notation IKi-) and IK~) with a superscript - ,  in contrast 
to the usual notation IKi) and I/('2). The IK~-) are the exact generalized 
eigenvectors of the self-adjoint, semibounded Hamiltonian H with complex 
eigenvalues zi = mi - -  i ~ i [ 2 ,  i.e., they are the Gamow kets of the neutral 
kaon system. The Gamow kets satisfy exactly  the (exponential) time evolution 
equation (1.4), with H being the infinite-dimensional self-adjoint Hamiltonian 
operator and not a complex two-dimensional matrix Hen. But (1.4) [and also 
(1.3)] is to be understood as a functional equation over the space ~+: 

(en '~ - Iz;)  =- ( ~ -  le-i t t•  = e - i ( m i - i ( ' y i / 2 ) ) t ( ~  - IZ;) 

for all t~- ~ ~ and t > 0 (3.7) 

This means one can only form Dirac bra-ket of (1.4) with a ~ -  that is an 
element of the infinite-dimensional space ~+ and not in general with qb + 
qb (see footnote 3). 
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That the vectors ~ -  in (3.7) can only be of  the space qb, (i.e., representing 
the registered decay products, e.g., ~oot = 17r+,rr - )  is not a restriction on 
physics, since we are interested in decay probabili t ies or transition rates into 
observed out "states" and not in arbitrary matrix elements.  That t -> 0 in (3.7) 
i.e., that the time evolution of  the G a m o w  vectors is given by a semigroup,  not 
a unitary group, is derived using the mathemat ics  of  the RHS (Bohm, 1978, 
1981, 1993-1995, Gadella,  1983a, b, 1984, Antoniou and Prigogine, 1993; 
Antoniou and Tasaki, 1993) and is the appropriate restriction for decay 
processes (arrow of  time, microphysical  irreversibility). 

Using the c.s.c.o. H, CP, we have two choices for the basis vector  
expansion: 

1. Dirac basis vector  expansion (B.1): 

4, + = ~ aE ~E, cp+)bcp(E) (3.8) 
c p  = +. I 2 row)  

where the expansion coefficients (energy wave function) are wel l -behaved 
functions along the cut in the physical sheet 2m.~ < E < ~c 

bop(E) = (+E, cpld~+) ~ Y (Schwartz space) (3.9) 

If  +§ is a state of  the neutral kaon system, then bop(E) are presumed to be 
peaked at E = mx~ for cp = 1 and at E = mK2 for cp = -- 1. These functions 
may in the neighborhood of  the energy value E = rnxj come close to being 
Brei t -Wigner  ampli tudes (with widths ~,,-). 

The expansion (3.8) has its analogue in Hilbert  space quantum mechan-  
ics. Hilbert space quantum mechanics amounts  to the assumption that the 
energy wave functions satisfy the conditions 

bop(E) ~ L 2 and Ebcp(E) E L 2 (Lebesgue square integrable) 

(3.10) 

Then bop(E) cannot be a Bre i t -Wigner  amplitude.  Further, the assumption 
(3.8) with (3.9) or (3.10) causes the wel l -known problems of  deviations 
from the exponential  decay law in general  4 and some additional problems 
specifically for the neutral K-sys tem (Khalfin,  1972, 1994). 

I f  the prepared state ~§ is a pure strangeness = +1  state ++ = ~by+___l, 
which would usually be denoted by qb+=, = rK~ then for that +y=l the wave  

4Deviations from the exponential law for large values of t follow from the finite lower limit 
E = 2m.~ in the integral (3.8) (in contrast, the integral representation of the Gamow vectors 
extends over - ~ t  < E < +ce, where the negative E are on the second energy sheet of the 
S-matrix). Deviations for small values of t follow from the condition that qb + be in the domain 
of H [second equation (3.10); Fonda et aL (1978), and references therein]. 
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functions in (3.8) would  satisfy 5 

b(E) 
bcp=_l(E) = bcp=+l(E) ~ ~ (3.11) 

This means that a prepared state vector with a definite hypercharge y = + 1 
or - 1  has the Dirac basis vector expansion 

y2 b(E) ?py = dE(IE,  cp = + 1 , * )  + sign(y)lE, cp = - 1 ,  * ) ) ~  (3.12) 
trlw 

If  one defines 

"lK~ '' = dEIE, cp = +1 ,  - l ,  +)b(E) (3,13) 
m ~  

and uses the notation 

4- 
(~)y=l  ~" IK~ (~y4"=- I = IK ~ (3.14) 

then (3.12) is the standard expression 

1 1 
IK ~ = - ~  ( " l r~  ' ' + "IK~ IK ~ = - ~  ("lK~ - " lK~ '') (3.15) 

However, the vectors "K~ ' '  do not give the Lee -Oehme-Yang  theory, 
because they cannot have the properties (l .4a) and (l .3a) that one demands 
of  the usual IK~ Indeed, if one defines IK~ by (3.13) and imposes the 
precise conditions (3.10) given by the Hilbert space formulation, then one 
arrives at all kinds o f  "CP-violation problems of  the exact (Hilbert space) 
quantum theory" (Khalfin, 1972, 1994). 

We shall not use Hilbert space quantum theory here and thus not make 
the assumption (3.10). Instead we will use the conditions (2.1), which in 
terms of  the wave function b,z,(E) = {+E, cpld~ § means bop(E) ~ 9 o f"l ~ _  
[Hardy class function from below (Bohm and Gadella, 1989; Bohm, 1994)]. 

5 Though (3.11 ) looks suggestive because of (3.15) it is not obtained without additional explana- 
tions: Since { CP, Y ~ = 0, the hypercharge operator Y~ changes the eigenvalues cp = +- I 
of the operator CP; thus 

Y~ cp § = .qcp(E)lE'(-cp) +) 

where the phase factor "q,.p(E) can be chosen to be unity, fixing the relative phases of the 
wave function b.,~(E) and b_~(E) of (3.11) in the standard way of (3.15). We also choose the 
phases such that CP~ + = r for the vector in (3.12). However, since [H, Y~ :~ 0 (due to 
H~ in H = Ha + H,~), yop also shifts the energy (i.e., the invariant mass of the decay products 
of KI~,7) slightly. Thus, more accurately one would have to take in place of (3.11): b~.(E) = 
sign(_v)bL(E'), where E' ~ E. Since we do not want to use the Dirac basis vector expansion 
(3.8), we need not pursue this point any further. 
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T h e n  one  can also use the Di rac  basis vec to r  expans ion  (B.1) to ob ta in  (3.8) 

for  0 § E ~ _ .  But  as an a l t e rna t ive  to ( B . I )  one  has a second  cho ice :  

2. The  c o m p l e x  basis  vec to r  expans ion  (B.2): 

d~ + = IK~  + [ K ~  + F,.p=+t + F , ~ = - I  (3.16)  

Here  we  have  de f ined  

I 
--'Ze[l 

F~p = d E  IE, c p - ) O ~ p ( E )  (3.17)  
J(2mw) 

which  we cal l  the b a c k g r o u n d  term. And  we  have  de f ined  the (d i f fe ren t ly  

no rma l i zed  6) G a m o w  vec tors  

[K ~  = [zi, c p  = - ( - 1 )  i, - ) ~ ;  zi = mi  - , -~ (3.18)  

or  the mic rophys i ca l  state ope ra to r  

I K ~  +K~ = J zi, - )2rryi (+zi l  (3.19)  

S ince  IK ~  ~ qbX+, the vec tors  de f ined  by the r.h.s, o f  (17) must  a lso  be in 

_>5: F ,~  c qb ~, because  0 § ~ qb_ 

A c c o r d i n g  to the theory  that under l ies  (B.2),  the e i g e n v a l u e s  

. "Yi  
zi = mi  - i - -  

2 

in (3.18) and (3.19) are the c o m p l e x  ene rg ies  o f  K ~  = 1, 2). Th is  m e a n s  

they  are the pos i t ions  o f  the r e sonance  po les  for the two r e sonances  K ~ and 

K ~ (e.g., o f  the S -mat r ix  for  the sca t ter ing  p roces s  wi th  r e sonance  fo rma t ion  7 

6The normalization of the Iz~,) has its origin in the 8-function "'normalization" of the Dirac 
ket, ( -EIE ' - )  = 8(E - E'), and in the Titchmarsh theorem. The "normalization" of the 
IKT) has been chosen such that in the limit ~ti/mi--* 0 it agrees with the normalization (unity) 
of the usual IK~ Since the normalization is not relevant for our problems, we choose here 
the more familiar normalization, which leads to the factor ~/2~r3~,. in (3.18). 

7The Gamow vectors can be defined as vectors ~ do• that are associated with the resonance 
pole of the S-matrix in the same way as the bound-state vectors can be defined as the vectors 
associated with the bound-state poles of the S-matrix. Whereas in the standard Hilbert space 
quantum mechanics, the bound states can also be defined independently of the S-matrix, 
resonance states cannot. But in the RHS formulation both can be defined independently of 
the S--matrix, as (generalized) eigenvectors of H. Using the S-matrix definition of resonances, 
the associated Gamow vectors can then be shown to satisfy (1.3) and (1.4) for t -> 0 [or 
precisely (3.7) as generalized eigenvalue equations (A.6)]. The same Gamow vectors appear 
also in the complex "spectral" decomposition (B.2), which is an exact representation for every 
very well-behaved vector ~* e do_, i.e., for every vector which in our interpretation (2.1) 
(based on the preparation --* registration arrow of time) represents an in-state prepared by an 
experimental apparatus. Note that the existence of this preferred direction of time can be 
formulated as: A state must be prepared first before an observable can be measured in it. The 
Liouville equation of Huet and Peskin (1995) and Ellis et al. (1984, 1992, 1995) leads, like 
our semigroup, to an "arrow of time"; however their irreversibility is due to extrinsic influences, 
whereas in our case the time evolution is generated by the Hamiltonian of the system. 
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rrar ---," (K ~ R ~ = (K ~ K ~ --+ -rr'rr (3.20) 

or any other scattering processes in which K-resonance formation occurs). 
This value is identical with the generalized eigenvalue of  H. 

The expansion coefficient--i .e. ,  the coordinates o f  the vector do+ along 
the basis vectors (3.3a) and (3.3b)--are ,  according to (B.2), given by 

bcp=+L = (+K~ bop:- ,  = (+K~l+ +) = 2,f~-~z(+Z21do +) (3.21) 

bcp(Eu) = (-Ell ,  cpld~ +), (-Ell ,  cpldo +) = Scp(Eu)(+Encpldo +) (3.22) 

where S(E) is the S-matrix analytically continued to values Eft at the negative 
real axis on the second sheet [of, e.g., the scattering process (3.20) if we 
consider, as we shall, the decays K ~ ~ ,rr,rr]. 

The representation (3.16) is the special case o f  (B.2) if there are no 
bound states (i.e., no neutral K's with a mass below the rr+~r - threshold) and 
if there are only two resonance states w i t h f f  = 0- .  Under these assumptions 
the representation (3.16) is therefore exact (like the spectral theorem) for 
every do+ ~ ~ _ .  Whereas the vectors IK ~  are well-known basis vectors, 
the "background integrals" (3.17) (integrals along the negative real axis of  
the second sheet) depend upon the dynamics H or S, and upon the prepared 
state ~+ and are not well known. 8 

The best situation is obtained if one can prepare a state ~* such that 
the background term is very small. Then one has f rom (3.16) for any pure 
(i.e., coherent "mixture" or superposition) neutral kaon state 

dO + .~ IK~ +lK~ (3.23) 

This means that for values of  Ib~p(E)l < <  Ib ,p / , f~ l  any prepared pure neutral 
kaon state is approximately a superposition of  IK ~  and IK~ 

We now shall take for the prepared state dO+ a hypercharge eigenstate 
as produced, e.g., by the elastic scattering process (3.1) 9 (Gell-Mann and 
Pais hypothesis) which we call dOy=+t (corresponding to IK~ or dOy=_ l 
(corresponding to IK~ Then 

dOy = Iz,, cp = +1-}/~{ + Iz2, cp = - 1 - } / ~  

+ dE (IE, cp = + l-)b~(E) + IE, cp = - 1, -)bY_ ~(E)) (3.24) 
J 2 rn.n 

SThe Hardy class functions in the half-plane (-~r ~) are already determined by their values 
on the positive real axis, i.e., by their physical values of energy E, but S(E) depends upon 
the dynamics of the problem and ("Elqb*) on the choice of the prepared state vector (prepara- 
tion apparatus). 

9 In the realistic experiment (without regeneration) one does not have pure states, but an incoher- 
ent mixture. But. as a consequence of strangeness conservation in the strong production mecI',a- 
nism, these are incoherent mixtures of r + and qb~-,_, i.e., the state is w.(p)qb.,=t+tP~)(C~y=t I+lp~ 
+ w-~(p)ldp~C-_:'-~,)(O.~P-~jI integrated over all values Of the K-momenta p. 
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and using the same arguments that led to (3.11), w one obtains 

1 b b(E) 

(3.25) 

For a hypercharge eigenstate the approximation (3.23) then becomes 

b 
d i D ; =  1 ~ (IKi-) --+ I K~-)) - ~  (3.26) 

This is the analogue of  the standard expressions (3.15), except that the 
rKT) in (3.26) are the Gamow vectors with the property (1.3) that have the 
exact time evolution (3.7) or (1.4). 

We now obtain the time evolution (3.2) o f  the prepared state qby for t 
> 0 using the representation (3.24), since for t >- 0 the evolution o f  the 
Gamow vectors is known from (3.7), 

dO + e -iHxtA" y =  .,. i ( t )  = NJy= =1 

= b (e_i,,Ite_(Vj/2;tlK?) + e_i,,,2,e_(.t2/~)tlK~)) (3.27) 

~ - -~I I  
+ dE(+_lE,  cp = + I - ) +  IE, c p =  - l - , ) e  - i e ' b ( E )  

~o , /2 

Note that according to (3.27), e -m• cannot transform from the background 
term ( F ; I  + F - I )  to IKi-) or IK~) and it cannot transform from IKf)  to 
IK?). This means our theory does not predict anything that could be interpreted 
as "vacuum regeneration o f  K~ (or Ks) from KL" (Khalfin, 1972, 1994), which 
is also not observed. 

The approximation of  a prepared state for very small background term, 
I b ( E ) ~ i / b l  < <  I, given by (3.26), has the time evolution 

~bf= +(t) e -iHx''~" + b ----- Wy=~_l = " ~  (e-imJte-(~q/2)tlKt) -+- e-im~_te-(-tz/21tlK~)) 

(3.28) 

inDue to [H, yop] 4= 0 the operator Y~ is not a symmetry group generator, but a spectrum- 
generating group generator changing not only the eigenvalue cp of CP, but also the eigenvalue 
z, of H: 

Y~ cp = l,-) = qllz2, cp = - l . - }  

Y~ 2, cp = - l , - )  = q_llzl, cp = - [ , - )  

where -q are phase factors (which can be chosen + 1 by absorbing then into the b,: b, ~ "q,b,, 
b_, --* rl-jb_,). These relations are needed to establish (3.25). See also footnote 5. 



Irreversible QM in the Neutral K-System 2255 

This means that the RHS quantum theory reproduces to a certain extent the 
Lee-Oehme-Yang theory, and if ~b + can be prepared such that the background 
term Ibq,(E~OI is negligibly small, then the Lee--Oehme-Yang theory emerges 
as its approximation. Conversely, the worthiness of the Lee-Oehme-Yang theory 
can be taken as a measure of how small the background term FTp ~ 4)+x in 
(3.16) and (3.24) can be made if the K~ ++ ~ qb_ is suitably prepared. 

Thus the "complex spectral" resolution (B.2) of the RHS formulation 
of quantum mechanics chooses the basis system in qb ~ such that the two- 
dimensional space ~2 of the standard neutral kaon model is spanned by the 
generalized basis vectors IKi-), IK;). ~ dp • One does not have to make any 
special assumptions about a complex effective Hamiltonian. The Hamiltonian 
H (preciSely its closure H*) is just required to have the standard properties: 
It is a self-adjoint operator, bounded from below. 

The two-dimensional matrix H en. emerges as the matrix of this infinite- 
dimensional operator H in the two-dimensional subspace ~2 C 4)x. Thus 
the RHS formulation justifies the effective Lee-Oehme-Yang theory--in 
contrast to the exact Hilbert space formulation, which contradicts it (Khalfin, 
1972, 1994). The RHS formulation also gives the semigroup (t -> 0) time 
evolution of the Kaon decay, (3.27), (3.28), which is one of the many manifes- 
tations of microphysical irreversibility. Furthermore, for the kaon system in 
particular, it predicts the background term, which, however small, must be 
different from zero (because ~b + E qb_ cannot be a superposition of two 
vectors IKi-), IK~-) ~ ~ ~). 

The existence of this background term in (3.27) has some significant 
consequences, which may or may not be of practical importance since 
I,f~b(E)/bl < <  1 could be too small to be observed. However, since in the 
case of CP violation and direct CP violation one is talking of effects of the 
order of 10 -3 or 10 -6 and since one also discusses CPT violations and 
violations of microphysical quantum coherence (Maiani, 1992; LeGac, 1996; 
Huet and Peskin, 1995; Ellis et al., 1984, 1992, 1995), which are orders 
of magnitude smaller than 10 -3, a discussion of possible effects from the 
background terms is warranted. 

4. LONG-TIME 2xr DECAYS OF NEUTRAL K WITHOUT 
CP-VIOLATING HAMILTON/AN 

The quantity that is measured in the neutral K experiments (Gibbons, 
1993, esp. Sections 9.2, 9.3; Geweniger et al., 1974; Christenson et al., 1974; 
Barr et al., 1993; Gibbons et al., 1993) is the instantaneous decay rate of 
the K~ into "rrrr ('rr+'rr - or 7r~176 In analogy to the instantaneous transition 
rate of ~eff (t) into "rr'rr, which is given by (1.8) with (1.7) and (1,5), we take 
for the instantaneous transition rate of the prepared state ~b+(t) into rr'rr the 
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matrix element (~rTrlHwl+~=l(t)), where H,, is the CP-conserving interaction 
Hamiltonian. The difference between the standard phenomenology and the 
model that we want to consider in this section is the following: Our Hamilto- 
nian is 

H = H 0 + H ~ ,  with [H, CP] = 0 ,  [ H~, CP] = 0  (4.1) 

and our K ~ state [qb~-=t prepared in the inelastic scattering process (3.1)] is 
given by (3.27), which evolves with a preferred time direction, t >- 0. In the 
effective theory summarized in Section 1, the Hamiltonian is H given by 
(1.2), but the t ime-evolving state vector is given by (1.6) [and though  it is 
only used for the forward time direction, there is no theoretical reason that 
qbet~(t) could not also evolve backward in time]. For our model we define the 
ratio R(t) by replacing in (1.8) Hint by Hw, dO r by d~ § and ('rr'rrlHintlKs) by 
('rr'rrlawlKi-}, since IKs} ---) IKi-} for an Hg iven  by (4.1). Thus the normalized 
instantaneous rate as a function of  t (proper time in the K ~ rest frame) is 
given by It 

+ 2 (TrwrlHwl~.v=+ j(t)) 
R(t) = ('n"n'ln~.lKi-) (4.2) 

We calculate R(t) using our theoretical result (3.27) and obtain [by inserting 
(3.27) into (4.2)] 

R(t) = I e(-yl/2)te-imlt b 
i 

f -=" ('rrTrlHwlE, cp = + 1 -} b(E) e_ie , 2 

+ ,iE 7-47h7   
(4.3) 

.10 

since (TrwlH~IK~} = 0, and (-rr'rrlHwIE, cp = - I ,  - )  = 0 due to (4.1). In 
the same way as for the R(t) of  (1.9), the first term vanishes for large values 
of  t --~ 20 (l /y,) ,  (e -'~,`a ~ 10-s), so that 

1 
R(t = 20%) = ,~('rr~r/-H~lK~-) 

f 
- - ~ l l  

X dE (,rr~rlH~lE, cp = + l -}b(E)e  -'e' (4.4) 
.io 

t~To be more scrupulous, we should calculate the time-dependent transition rate ~(t) using 
the exact Golden Rule of RHS quantum mechanics (Bohm and Gadella, 1989; Bohm, 1994), 
which is possible and will be done in a future publication. But in order not to complicate 
the presentation further by novel arguments which are not relevant for the problem under 
consideration, we use this semiheuristic R(t) and the observable parameters xl+_ (and rlr 
defined in terms of the effective theory for the phenomenological analysis of our exact 
(untruncated) theory (3.27). 
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Theoretically, not much can be said at this stage about the integral on 
the r.h.s, of (4). We write it using (3.22) as 

I(t) = - dE(~r'rrlHwlE, cp = +l-)S~.p=~-t(E)(*E, cp = + l l ~ + ) e  -~E' 

= - dE(~r~rlH~lE, cp = + I+)(§ cp = +lld~+)e -'E' (4.5) 

Then (4.3) can be written as 

e (~' /2) te  ~ml /2b R I t )  = - �9 - - - ~ _  

l(0 12 
+ ('rrarIHwlK i-),j2 ] (4.6) 

The integral I(t) describes that part of  the transition 0 § ~ ~'rr which does 
not go through Ki- resonance formation. We know that (~EI+ +) E fT r'l ~ _  
(Hardy class function of the lower half-plane, second sheet). If we also 
knew that (w'rrIHwlE-)S(E) ~ ~ A ~ _ ,  then we could prove (using the 
Riemann-Lebesgue lemma for Hardy class functions) that i(t) also decreases 
for increasing t, but it decreases less than an exponential e -v .  Even though 
we do not have this information, let us assume that the nonresonant back- 
ground I(t) will survive the exponential e -'~t. 

II(t)l z --> const �9 e -'~tt for 
1 

t -> 20 - -  (4.7) 
"r 

The magnitude of (+EIT, cp = ll~b +) ]which can be calculated from (+El+ +) 
on the positive real axis, i.e., at physical values of  E, because of its Hardy 
class property (Bohm and Gadella, 1989; Bohm, 1994)] depends upon qb +, 
i.e., upon the preparation of the K ~ state. Since experimentally the ar§ - are 
selected such that their invariant mass is near the center of a K ~ Breit-Wigner 
energy distribution, the magnitude of the nonresonance contributions 
I(*Euld~+)l to the observed R(t) will be small. But we need only a small 
contribution on the r.h.s, of (4.4) in order to explain the experimental value 
(1.13) for R(20%). Mathematically, (+Eidqb +) must be different from zero, 
because qb + e ~_ .  But its magnitude could be arbitrarily small, too small to 
account even for the small value (1.13) of R(20r0. Thus the question is not 
whether such a term II(t)/(~r'rr(HwlK?)l, which decreases more slowly in time 
than the exponential e - '~' ,  exists, but whether this term in (4.6) has the right 
magnitude to explain the value (1.13). 

Since we have no theoretical prediction, we shall use the second term 
on the r.h.s, of (4.6) as phenomenological parameter. 
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The phenomenolog ica l  value that we obtain for this background integral  
from the values (1.12) 12 and (1.13) is 

I(t = 20"rt) 
(~-'rr~-H~-~) ~- 2.23 • 10 .3 (4.8) 

This means that if  the nonresonant  contr ibut ions to the transitions of  the 
prepared state qb § into -rrTr are about 2.23 • 10 -3 of  the K r r e s o n a n c e  term, 
then these contr ibut ions can explain  the Princeton effect without  the assump-  
tion of  a CP-v io la t ing  Hamil tonian.  Theore t ica l ly  II(t)/(TrTrlHwlK?)l could of  
course be much smal ler  than 10-3; in fact it can be arbitrari ly small  as long 
as it is not equal  to zero and still fulfill the mathemat ical  condit ions that qb § 

(I)_. 
To disp lay  the dist inct ion between the way the effective L e e - O e h m e -  

Yang theory expla ins  the exis tence o f  a long- t ime K ~ ---) ,rr'rr decay mode  and 
the way the exact  theory in the RHS expla ins  this effect, we compare  the 
state vector  for K-short  and K-long in both theories.  Accord ing  to (1.1), we 
have (except  for some normal izat ion)  

I K ; )  = IK0 + 6slK2) (4.9a) 

JK[)  = eLIKl) + IKz) (4.9b) 

Here IKs)  and fKZ), and not IKi) and IK2), are assumed to be the G a m o w  
vectors, and eL ~ es ~ e -~ 10 .3 are very s m a l l .  In analogy to this we def ine 

1 
qb,~ = IKF) + ~ F g = _ ,  (4.10a) 

1 
~b~ = ~  F ~ = ,  + IK~) (4.10b) 

where IK~2) are the G a m o w  vectors and F ~  are the vectors (3.17) in the 
expansion (3.16). Then ~b] o f  (3.24), (3,25) can be written as 

b + b 
i~;=...1 = •+ " ~  __ ~1- " ~  (4.11) 

This formula  is the analogue of  (1.5) (with as = +-az = b/,,/'2) of  the effec- 
tive theory. 

]ZThe observable parameters rl§ (and rloo) are by (1.10) defined in terms of the effective 
theory. But they are experimentally determined as the ratio of the K ~ --* "rr+,'rr - rate at long 
times t ~ 20(I/T~.) to the rate at short times (t = I/~/~ extrapolated back to t = 0), when the 
K ~ -* ,'rr*'n "- are mainly due to Ks --* ,'r*w -. Thus the value ( I. 12) for "q+_ is also in the present 
case related by (I.11) with sufficient accuracy to  R( t  = 2 0 ' r s ) .  
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Comparing (4.10) with (4.11), we see that: 

�9 ~b~ + are, like the IKs), mostly cp = +1 vectors with a small cp = 
- 1 contribution. 

�9 ~b~ are, like the IKL), mostly cp = - 1  vectors with a small cp = 
+ 1 contribution. 

But whereas in (4.9) the small admixtures of the opposite parity is given 
by elK2) a ~2 and eIKl) ~ ~2, respectively, the opposite parity admixtures 
in (10), (1/b)F~p=_l and (1/b)F~=+b respectively, are not elements of ~2- 
(Recall that ~2 C qb ~ is the space spanned by the vectors IKi-), IK2)). Since 
in the effective theory one has only the space ~2, one had to postulate an 
effective Hamiltonian H with [H, CP] 4= 0 in order to obtain (4.9b) and 

('rr'rrlHIK~-) = e('rr'rrlHIKi-) + ('rr'rrlHIK~-) 4 :0  (4.12) 

In the infinite-dimensional RHS formulation one has other vectors outside 
of ~2 which have the opposite parity, so that 

1 
('rr-ulH~b~) = ~ ('rr'rrlHIF;=+,) �9 0 (4.13) 

even though [H, CP] = 0. This term gives the -rr-u transitions for large t ~- 
20"/.3 when the amplitude ('uwlH[+ +} is suppressed by a factor of e -~t/2. 
Thus the analogue of e(w'ulHIKi-) is in the RHS formulation given by 
(l/b)('u'rrlHIF~=+l}, which has nothing to do with CP violation. In the exact 
RHS theory with non-CP-violating H, however, there cannot be an anologue 
of the direct CP-violation amplitude (-uwlHIK~). 

The theoretical CP problems that the Princeton effect caused for the 
Lee-Oehme-Yang theory clearly had its origin in the confinement of the 
theory to the two-dimensional space ~2. This confinement to ~2 is an ad 
hoc assumption which cannot be justified in an infinite-dimensional space 
of states, except as the zeroth order of perturbation theory: If one considers 
/4o = H - H~ as the exact Hamiltonian and H~ as a perturbation of H and 
if one takes the eigenvectors I Ki-) and I K~) of H as the zeroth-order eigenvec- 
tors of H0, then one knows from perturbation theory that the higher order 
eigenvectors of Ho are generally not linear combinations of the zeroth-order 
eigenvectors. The exact eigenvectors IK~ IK ~ of H0 are then given by the 
highest (~) order of perturbation theory. They therefore cannot in general be 
linear combinations of the zeroth eigenvectors IKi-) and IK~) only. But this 
is exactly what would be required in (1.5) (for as = aL = l/v/2 or r ~t~ = 
IK~ Though the complex basis vector expansion (B.2) was the origin of 
the idea that the Princeton effect can be explained without a CP-violating 
Hamiltonian, it is not really needed in order to ask the question why the 
prepared state IK ~ should be expandable (with an accuracy of 10 -3) only in 
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terms of vectors of the two-dimensional space ~2. The existence of a finite 
(>2) or infinite number of linearly independent (basis) vectors--irrespective 
of what definition of convergence one uses--is already sufficient to see the 
problem. The RHS is needed to explain the existence of the eigenvectors 
(l.3a) with the property (l.4a) for t --> 0 and to justify the inclusion of these 
eigenvectors in a complete basis system for the prepared state vectors 
dpy*=l e qb_ (where dO~'=t corresponds to I K~ For these properties one needs 
the mathematical (topological) completion of the linear scalar product space 

(Appendix A). 

5. THE STANDARD P H E N O M E N O L O G I C A L  DESCRIPTION OF 
CP VIOLATION AS A TRUNCATION OF THE EXACT THEORY 
IN THE RHS 

Even if the ~w decay of the long-lived neutral K-meson state can be 
explained without a CP-violating interaction Hamiltonian, it does not mean 
that there is no CP violation of the Hamiltonian. As was already mentioned 
above, the background term in (3.24)--though it needs to be there--may be 
so small [Iv/~tb(E)/bl < <  l0 -3] that it cannot account for the Princeton 
effect. Also, the observed time dependence of the transition amplitude (1.8), 
in particular the interference term in (1.9), may be such that it cannot be 
explained by the background integrals in (4.3) or (3.27). Therefore, we 
want to apply now the same exact theory of Sections 2 and 3 to the CP- 
violating Hamiltonian 

H = H + H , w + H o + H ~ , + H s w ,  [H, CP] 4= 0 

Then, in place of the eigenvectors IKi-) and IK~-) of H, we use the eigenvectors 
IK~-) and JK[) of H in the complex basis vector expansion (B.2) of the K- 
meson state vector +y :  

1 
qb + = ~ (IKj-)bs + IKZ)bL) 

f-OOl[ 
+ ~, dE IE, f3-) b~(E)/,/~ (5.1) 

Here IE, [3-) are the generalized eigenvectors of H, and [3 are the degeneracy 
quantum numbers (where now [3 r cp). The complex basis vector expansion 
(5.1) is, as before, very general and exact, under the assumption that FKs-) 
and IK~-) are the only Gamow vectors with the right quantum numbers for 
the neutral K-system. The complex expansion coefficients bs, bl., and b~(E) 
= (E, [31qb +) depend again predominantly upon the experimental conditions 
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for the preparation of d~ +. Again for mathematical reasons b~(E) E ~Z  fq So 
cannot be exactly zero, but it could be arbitrarily small (mathematics provides 
no information about the order of magnitude involved). Thus, if 
I,f~b(E)/bs.LI < < 10 -3, then, as far as the Princeton effect (which is of order 
10 -3) is concerned, every pure neutral-K state obtained from (5.1) is ade- 
quately approximated as 

1 
4) + -~ (IK~-)b, + IK[)bL) --~ ~ IK;)p + fK~-) (5.2) 

Since the time evolution of the Gamow vectors IK~-) and IKZ) is derived 
(not assumed) to be given by (1.4b) (with the additional result that t -> 0 
and with the qualification (3.7)), we have obtained in the RHS an exact 
theory which contains the standard phenomenological description of the 
neutral K-system with CP violation as an approximation. No new physics 
has been developed, but the standard phenomenological description has been 
given an exact theoretical foundation. The background terms in (5.1) may 
play (an observable) role in other experimental investigations (Maini, 1992; 
LeGac, 1996; Huet and Pesken, 1995; Ellis et al., 1984, 1992, 1995). 

Since the basis vectors on the r.h.s, of (5.1) are generalized eigenvectors 
of H, the time evolution operator e -'~• is diagonal: 

1 ~b +(t) = e-i l- lx 'dp + = - - ~  (e-ims'e-(~sr~)qKs)bs + e-i=Ue-(~t~)qK~)bL) 

~ --OOlI 

+ ~ dE e-'eqE, [5-)b~(E)l,~; t ~ 0 (5.3) 
[3 J o  

In particular, IK~-} cannot evolve by its own Hamiltonian H (i.e., without 
additional interaction with a regenerator) into IKj-) or vice versa (i.e., there 
is no "vacuum regeneration of Ks from KL"), and neither can Ks be regenerated 
due to e -'v" from the background term 

( --ooll 

Fff = dE E, f3-)b~(E)/v/2 
J 0  

The Gamow vectors IKs) and IK[) evolve (as a consequence of their defini- 
tion from the resonance poles) irreversibly and obey the exact exponential 
decay law (1.4b): 

e-aaXtlK~) = e-i"s'e-(~s/2)qKs), t >-- 0 

e-'~XqK[) = e-imde-('lLt2)qKL), t ~ 0 (5.4) 

There is no additional term on the r.h.s, of (5.4), in contrast to exact infinite- 
dimensional theories in the Hilbert space (Khalfin, 1972, 1994). Also, 
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IKj-) and IKE) cannot be expressed in terms of +v=+ + i and +y=_l, or any 
other finite or infinite superposition of doy ~ qb_, due to the terms 
Fff e cb+ x on the r.h.s, of (5.1). The time evolution in (5.3) is irreversible, 
t -> 0, and do+(t) e ~ x .  This means that it can only be evaluated as a 
functional (~-Ido+(t)) at ~ -  e q~+ (which represents observed decay products 
like qJ- = I'rr'rr)). In particular, the functional do+(t) cannot be evaluated at 
do + e qb_; i.e., the quantity (do~ldoy(t)) = (do~le-'H• which would 
represent a vacuum regeneration amplitude of K ~  ' = - i )  from K ~  = 
+ 1), and vice versa, makes no sense in our theory. These kinds of  quantities 
also have no observable meaning, since no experiment can measure the 
probability for a "transition" from an in-state doy%~ into another in-state 

4,;=-,. 

6. SUMMAR Y AND C O N C L U S I O N S  

The purpose of this paper was to use the neutral K-system of two 
interfering resonances to test some aspects of the RHS quantum theory of 
microphysical irreversibility. We limited our investigation to the hypothesis 
that the two decaying K-states are ordinary, first-order, S-matrix-pole reso- 
nances [by the choice of (B.2)] since the standard theory with complex 
effective Hamiltonian makes the same hypothesis (by the choice of  a diagonal- 
izable complex Hamiltonian matrix rather than a Jordan block). Then we saw 
that the effective Lee-Oehne-Yang theory is a subtheory of the exact theory 
in the RHS. It must be emphasized that this is not the case for the exact 
theory in Hilbert space, because the Hilbert space theory does not allow for 
a complex basis vector expansion. As a bonus, we saw that the remainder 
of  the exact theory, which is always ignored in the two-dimensional effective 
theory, leads to a nonzero 2"rr decay rate of the neutral K-system for large 
time even if we choose a CP-conserving Hamiltonian. This may or may not 
be of practical significance, since at this stage nothing can be said about 
its magnitude. 

Many more experimental properties are known about the instantaneous 
transition rate I('rrTr[Hintldo+(t))[ 2 than have been used in our discussion in this 
paper (Gibbons, 1993; Geweniger et  al., 1974; Christenson et  aL, 1974; Barr 
et  al., 1993; Gibbons et  al., 1993). To make adequate use of these properties, 
the background terms (xrTrrHwIF2p(t)) need to be investigated further and 
more of its characteristics need to be known than just the property that it 
decreases slower than exponentially in time. Of  particular interest is the 
transition rate at instances around t = 12"r s, where it has been fitted (see 
above references) to the interference term cos(Amt + q~) of (1.9), a result 
which, in that form, probably cannot be obtained from the background term. 
These questions will have to be discussed in a subsequent paper. 
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A P P E N D I X  A. F R O M  A P R E - H I L B E R T  SPACE TO A R I G G E D  
HILBERT SPACE 

A pre-Hilbert space is a linear space qY with a scalar product. This scalar 
product is denoted by 

(~, F)  or by (~IF) (A.1) 

The pre-Hilbert space is without any topological structure; that means neigh- 
borhoods, the convergence of infinite sequences, topological completeness, 
continuous operators, continuous functionals, dense subspaces, etc., are not 
defined. This space is what physicists mostly use for their calculations 
(together with a few additional rules) when they speak of the Hilbert space. 

The Hilbert space ~ of mathematicians is a much more complicated 
structure. In order to make it topologically complete, its elements are not 
represented by functions (wave functions), but by classes of functions whose 
elements differ on a set of Lebesgue measure zero, a mathematically compli- 
cated and physically useless concept (because the apparatus resolution is 
described by a smooth function, not a set of Lebesque square-integrable 
functions). The RHS is the same linear space ~ ,  only with different topological 
completions: one completes �9 with respect to a topology that is stronger 
than the topology given by the Hilbert-space norm (e.g., one uses a countable 
number of norms) to obtain the space q~ C ~ and considers in addition the 
topological dual to q~, i.e., the space of continuous antilinear functionals of 
qb denoted by qb • Then one obtains the triplet of completions of ~ (all 
differing from ~ only by limit elements), the Gelfand triplet, or rigged 
Hilbert space: 

C 7f = ~ x  C dp• (A.2) 

with elements "bra" and "ket" (~bl ~ ~,  IF) ~ ~ x  

or "ket" and "bra" I+) e alp, (FI E �9 • (A.3) 

One widespread example for qb is the Schwartz space b ~ (i.e., �9 is often 
"realized" by the space of functions 9~ 

The vectors + e ~ (in their form as either kets I~b) or bras (qbl) represent 
physical quantities connected with the experimental apparatuses [e.g., a state 

defined by a preparation apparatus or an observable I~){Ol defined by a 
registration apparatus (detector) satisfies ~b, t~ ~ qb], the vectors (FI or IF) 

�9 • represent quantities connected with the microphysical system (e.g. 
"scattering states" IE) or decaying states IE - iF/2)). But there are vectors 
in ~ ,  namely those whose wave functions are not smooth, which cannot be 
related to experimental quantities. 
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A general observable is now represented by a bounded operator A in q) 
(but in general by an unbounded operator X or A* in ~ )  and corresponding 
to the triplet (A.2) one has now a triplet of  operators 

A*Ir C A* C A x (A.4) 

Here At is the Hilbert space adjoint of A (if A is essentially self-adjoining, 
then A t = A), A*Ir is its restriction to the space ~, and the operator A x in 
~ x  is the conjugate operator of A defined by 

(A61F) = (golAXF) for all go ~ �9 and all IF) ~ ~ x  (A.5) 

By this definition, A x is the extension of the operator At to the space ~ x  (and 
not the extension of the operator A which is most often used in mathematics). A 
very important point is that the operator A x is only defined for an operator 
A which is continuous (and bounded) in ~ ;  then A x is a continuous (but not 
bounded) operator in ~x .  It is impossible in quantum mechanics (empirically) 
to restrict oneself to continuous (and therefore bounded) operators X in ~ .  
But one can restrict oneself to algebras of  observables {A, B . . . .  }, described 
by continuous operators in dO, if the topology of cI) is suitably chosen. Then 
A x, B x . . . .  are defined and continuous in ~ x .  If A in (A.5) is not self- 
adjoint, then A*I, need not be a continuous operator in qb even if A is, but 
one can still define the conjugate A x which is continuous in ~x .  

A generalized eigenvector F e ~ x  of an operator A is defined by 

(AgolF) = (go laxF)  = to(g01F) for all go ~ �9 (A.6) 

where the complex number to is called the generalized eigenvalue. This is 
also written as 

aXlF) = tolF) (A.7) 

For an essentially self-adjoint operator (A t = A = closure of A) this is often 
also written (following Dirac) as 

A I F )  = tolF) (A.8) 

especially if one suppresses the mathematical subtleties and acts as if one 
has just a linear scalar-product space xI r. The generalized eigenvalues to for 
self-adjoint operators A t need not be real. 

A P P E N D I X  B. THE C O M P L E X  BASIS  V E C T O R  E X P A N S I O N  

The most important result of the new mathematical theory of quantum 
physics in the rigged Hilbert space is the complex eigenvector expansion. 
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This is the generalization of the elementary basis vector expansion of a 3- 
dimensional vector, 

x : ~ ei(ei" x) = ~ e/x, 
i= 1,2,3 

to the expansion of vectors qb + E qb_ using as basis vectors the generalized 
eigenvectors Iz~-i) of self--adjoint operators H with complex eigenvalues zRi 
and z. 

Earlier developments toward this generalization include the fundamental 
theorem of linear algebra, which states that for every self-adjoint operator 
H in an n-dimensional Euclidean space ~n there exists an orthonormal basis 
ei "'" e~ in ~ ,  of eigenvectors Hei = Eiei, i.e., f E  ~ can be written as 
f = Ei% 1 e,(ei, f ) .  This theorem generalizes to the infinite-dimensional Hilbert 
space ~ ,  but only for self-adjoint operators H which are completely continu- 
ous (also called compact operators which include Hilbert-Schmidt, nuclear, 
trace-class operators). For an arbitary self-adjoint operator one has to go 
outside the space to find a complete basis system of eigenvectors (which are 
then called generalized). 

The f i r s t  step in this direction is the Dirac basis vector expansion, which 
in mathematical terms is called the nuclear spectral theorem. It states that 
for every <b e el) 

f0 e~ r = dE IE~)(+EI~b +) + ~ [E.)(E~Icb) for qb ~ �9 (B.I) 
n 

Here, IE,) are the discrete eigenvectors of the exact Hamiltonian H = K + 
V (describing the bound states), HIE,) = EnlEn), and IE ~) are the generalized 
eigenvectors (Dirac kets) of H fulfilling (HxIE +) = (xIH• *) = E(xLE +) for 
all X e ~;  cf. (A.6). The "coordinates" of the vector ~b with respect to the 
continuous basis IE~), i.e., the set of energy wave functions (+El++), form a 
"realization" of the space ~ by a space of functions. We call ~b e �9 "well- 
behaved" if (+Eld~ § is a well-behaved function, i.e., of the Schwartz space 
5 ~ The IE*) correspond to the continuous spectrum (describing scattering 
states) and the integration extends over the spectrum of H: 0 ----- E < oQ. In 
place of the IE~), one could also have chosen the IE-) if the out-wavefunctions 
are more readily available. 

The second step is the "complex basis vector expansion." It holds for 
"very well-behaved" vectors of a subspace ~_  of dp (Schwartz space). For 
every ~b § ~ ~_  (a similar expansion holds also for every ~-  e ~ . )  one 
obtains for the case of a finite number of resonance poles of the analytically 
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continued S-matrix at the positions ZR; = Egg - iF;/2, i = 1, 2 . . . . .  N, the 
following basis system expansion: 

= do~ ]~+)(+co]qb +)  "k- E IZRi)Z'ITFi(+ZRi 14>+) 
J0 i=1 

+ ~] IE,)(E,I+) for 4> + ~ q~_ (B.2) 
n 

where fz~) 2,f2-~,- = +~i e q~ +x are Gamow kets (C. 1) representing decaying 
states (C.2). Their properties are summarized in Appendix C below (see also 
Bohm and Gadella, 1989; Bohm, 1994). The forms (B.1) and (B.2) of the 
generalized basis vector expansions assume that H is the only observable 
to be diagnalized (cyclic operator). If the complete system of commuting 
observables (c.s.c.o.) consists of H, Bl, B2 . . . . .  BN ---= H, B, then the projection 
operators IE,) (E,I ---, Z IE,, b) (E,, bl, where the sum extends over all 
values of the degeneracy quantum numbers b of the energy En. Similarly in 
(B.1), (B.2) 

rE§ +el Z Je, b+)(+E, bf 
b 

IZ,~)(+ZRI ~ ~] Iz,~, b)(+zg, bl 
b 

The operator B could be, e.g., the hypercharge operator/f  [H, B] = 0; it can 
be the operator C P  if [H, CP] = O. 

We will from now on omit the last sum in (B.1) and (B.2), as it represents 
the sum over the stationary, bound states, which have no importance for the 
problem of this paper (no bound states appear). Then we have two exact but 
different basis vector expansions for the same 4>§ [if we choose 4> = ~b § 
q b  C r in (B. 1)]: (B. 1) is the standard expansion and has a correspondence in 
the Hilbert space (spectral resolution of operators with a continuous spectrum), 
while (B.2) is new and shows that the quasistationary states Iz~) can serve 
as basis vectors in very much the same manner as the stationary states IEn) 
in the standard case. But in addition to the resonance states, the new basis 
vector expansion (B.2) also contains an integral over the negative real axis 
from, e.g., E = 0 to - ~ n  in the second sheet of the energy surface of the 
S-matrix. This integral, called the "background term" qbb+~ [which may be as 
much a misnomer as the term "complex spectral resolution" for (B.2)], may 
be infinitesimally small, but cannot be zero. But it may also have some small 
but observable consequences. It can be calculated using the van Winter 
theorem (Bohm and Gadella, i989; Bohm, 1994) from the values (+EI4> +) 
for physical energies 0 --< E < ~ and depends upon the apparatus for 4>* and qJ-. 
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APPENDIX C. G A M O W  VECTORS 

Gamow vectors are generalizations of Dirac kets, and therefore we 
denote them also by kets It~ 6) = I z ~ ) ~ ,  where zR = E - iF~2 is the 
complex energy value (for every Iz~) e ~x+ there is also a Gamow vector 
iz~+) ~ ~x_, zn = E -  iF/2). The Gamow vectors have the following 
properties: 

1. They are generalized eigenvectors of Hamiltonians H [which we 
always assume to be (essentially) self-adjoint and bounded from 
below] with generalized eigenvalues zR = ER - iF/2, 

H • [~c) = zRl~C) (C. 1) 

where En and F are interpreted, respectively, as the resonance energy 
and width. 

2. They satisfy the following exponential decay law for t >- 0 only: 

wG(t) = e-i t t•  ill' 

: e- i tER-i l ' /2) ' l~G)(qjGle i~ER+iF/2)t= e-r 'WG(0) (C.2) 

3. They have a Breit-Wigner energy distribution. 
4. They obey an exact Golden Rule of which Fermi's Golden Rule is 

the Born approximation. 
5. They are associated with a pole at zn in the second sheet of the 

analytically continued S-matrix. They are derived as the functionals 
of the pole term of the S-matrix. 

In the absence of a vector description of resonances in the Hilbert 
space formulation, the pole of the S-matrix has commonly been taken as the 
definition of a resonance. In the RHS formulation the Gamow vectors are 
derived from the pole term of the S-matrix (Bohm, 1978, 1981, 1994; Gadella, 
1983a,b, 1984; Antoniou, 1992; Antoniou and Prigogine, 1993; Antoniou 
and Tasaki, 1993; Bohm and Gadella, 1994), and therefore these vectors 
Iz~) ~ (b ~ describe decaying resonances as autonomous microphysical enti- 
ties, in very much the same way as the IE,,) describe stable particles. (There 
are also Gamow vectors [z~+), z*  = ER + iF/2 ,  associated with the pole at 
z~, and they have an exponentially growing semigroup evolution for - ~  < 
t - 0 . )  
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